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Statement of the problem
We consider of a ZnO nanowire (NW) grown along thaxis on a substrate. The wire is

normally compressed by a vertical for€e —fz, exerted at the top. Previous redtlits

indicated that when the free charge carrier densigccounted for, the compressed tip of the
NW shows a negative open-circuit potential (cappezzopotential).

The elastic behavior of piezoelectric media is goed by Newton's lalf

V-o=0, (2)

while the piezopotential is governed by the semicmtor device equatiGh

V-D:q(Ng—i—p—N;—n). 2

Equations (1)-(2) are fully coupled by the consite equations relating mechanical and

electrical quantities in piezoelectric media.



According to the Fermi-Dirac statistics, the carrikensitiesn and p in Equation (2) are
determined under thermodynamic equilibrium by tlusigon of the Fermi levek, with
respect to the conduction and valence band edgemnd £ , respectively. The carrier

densities can thus be calculated as

n=>~ N exp ﬁ : (3a)
¢ k,T
E —-¢&
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are the effective density of states in the valeand conduction bands, respectively. In

Equations (3)-(4)I" is the absolute temperaturk, the Boltzmann constant, the Planck
constant,m_ the effective mass of conduction band electrons,ra_the effective mass of
valence band holes.

Strictly, when impurities are introduced in semidoator crystals, not all dopantsv( or
N, ) are necessarily ionized, depending on the impueihergy level and the lattice

temperature. In particular, the ionized concertretiare given by

N; = alt
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whereg, andg, are the ground-state degeneracy of the acceptbdanor impurity levels
(usually g, = g, =2), while £, and&, are the energy of the states introduced by acrepto
and donors.

The conductiort, and valenceg | band levels of a free-standing undeformed NW can b
computed with respect to the Fermi leviel (set to zero as reference), enforcing the netytrali
conditionsN, +p =N, +n.

When the ZnO NW is compressed, the redistributiohmobile electrons and holes under

thermodynamic equilibrium are given by the Fermi&di statistics where the valence and

conduction band levels become functions of theiapaordinatex, i.e., £ (x) and & (x).
In particular, the band edge sthrE<x) is the sum of the electrostatic energy tegvh and

the deformation potential terlE ., (that may be important for large strains), i.e.

AE(x) =& (x)-&, =& (x)— &, = —qV +a,, A_ o

whereV is the electrostatic potential, arn(;Lfﬁ is the band-edge shift due to the
S
0

deformation (which is proportional to the relatinelume changeﬁ through the

Y%

deformation potential constant ). Finally, also the activation process of donora a

acceptors is modified by the deformation of thedranion and valence band edge. In fact, in

v

Equation (6) the acceptor energy level is givengpi/x) =& (x) + A&, , while the donor



energy level reads, (x): Sc(x)—AED (the band gap energy is assumed to remain

constant).

Numerical solution

The piezoelectric-semiconductor equations constigutoupled nonlinear set. In general, it is
not possible to obtain a solution directly in omneps but rather a nonlinear iteration method

must be used. As concerns the choice of independanables, the coupled electro-

mechanical problem is solved for the variat(l&sv) whereu is the displacement vector in

the spatial description (Eulerian form). As a capsnce, the electric field is related to the

electrostatic potential b = —V V', while the mechanical strain vector is relatedthe

mechanical displacement b:y:%(VunLVuT). By introducing the independent variables

(u, V), Equations (1)-(2)-(3) can be rewritten to obtaire coupled nonlinear partial
differential equations as

v. {[CE] Blu+[e]' v V} =0 o

V-{[eHBJu—/ﬁO [&E}VV}: q

N +p—N_—n
D p A , (7b)

where the impurities and the mobile charge derssdie linked to the electrical potential

and the displacement In order to make the solution of Equations (7) enefficient and to

avoid possible numerical overflow and underflowoesy we performed calculations using
normalized quantities through a consistent scaling.

The system in Equations (7) has been solved threugtandard Finite Element Method in
conjunction with the dumped iterative Newton methodieal with the nonlinearity. Taking

advantage of the rotational (cylindrical) symmetfythe structure, we reduced to a 2.5-D

problen” (i.e. our 3D problem can be simulated in a sindifmanner due to the presence



of some symmetries) by restricting the computalioh@main to a transverse: -plane
imposing equal to zero any derivative with respectthe angular variable . A nodal
approach with third-order Lagrangian basis fundidefined on a planar triangular mesh has

been used.

The symmetric 6x6 stiffness matr{x:E} of ZnO theoretically requires 21 independent

coefficients. However, because of the symmetriesurtzite hexagonal crystals, the stiffness
independent coefficients reduce to 6. Though atrap@ model has been shown a good
approximation in some cases, we have also considieesanisotropic model and verified that
even in our cases the differences with isotropidehare minor.

The polarization field produced by the strain tlglouhe piezoelectric effect is described by
the piezoelectric tensc[e], which theoretically has 18 independent coeffitserDue to
crystal symmetries in hexagonal wurtzite phase ethesmain only three independent

component$! It can be observed that for a pure compressionramtion, the resulting

piezoelectric field is oriented along the NW grovetkis. As concerns the dielectric relative
permittivity tensor, it presents a diagonal fdfmThe ZnO band gap energy has been

assumed equal to 3.4 eV which is so large thattmtribution of holes witm-type doping

and of electrons witp-type doping are negligible.

Numerical values of the physical parametersused in the simulations

The geometrical parameters of the nanowire Are=150nm and L = 4 um M The

stiffness constants of ZnO are (all the symmetiaes not indicated for conciseness)

c® =9209.7GPa , ¢®. =2109GPa , ¢°. =121.1GPa , c*_ =105.1GPa ,

1111 3333 1122 2233

ck, =4247GPa , ., =4429GPa ¥ the piezoelectric constants are



€31 = G0

= —0.51[C/m2}, Cppy = 1.22[C/m2}, e. . =

113 8223

— —0.45[C/m2};[5] the dielectric

3
relative permittivity constants arg, = x,, = 7.77 ands;, = 8.91 % the effective electron
mass ism, =0.28n,,"%! with m, the free-electron mass; the deformation potestaktant is
Ayes =-6.05eV;% the distance between the donor (acceptor) enenggl land conduction

(valence) band i\, = AE, = 35meV ; the temperature i$ =300K; the band gap is

5{1 =34eV.

Supporting results

For completeness, Figure S1 shows the carrier ooratn along the axis of a cylindrical

nanowire (radius 150 nm and length 2 pum) for tylpaaping concentrations under a 442
nNI compressive force; when reducing the doping leualer constant compressive force,
the depletion/accumulation regions broaden.

Though practical nanowires, even in absence ohimeal doping, unavoidably show some
equivalent doping level (e.g. due to crystal impetibns and impurities), it is interesting to
consider, as limiting cases, very low doping lewalsl even an hypothetical purely dielectric

ZnO nanowire. Figure S2 shows the piezopotentiahfoylindrical ZnO nanowire under axial
compression £ = —442 nN) for very low levels of n-type doping rangingi 10" cm* to
10" cm® and for the case of a purely dielectric ZnO namewThe results show that, under

the above-mentioned compressive force, at dopingldeas low asl0' cm® the
piezopotential is similar to that of the dielectmanowire. Clearly, in the hypothetical
dielectric ZnO nanowire, there are no depletiondanalation regions at the tip/base and the
voltage drop region extends to the whole nanowire.

The analysis of hypothetical perfectly insulatingnawires is much easier (only linear

equations must be solved so that iterative methoglsiot required); however, such analysis is

6



useful because insulating nanowires can be comsldexss a limiting case (e.g., the
piezopotential is obviously reduced by free chargesdl because we may verify that the
breaking-off of the anti-symmetrical dependence tfe voltage drop on the
compressive/tensile force is due to the couplingtled piezo-semiconductive equations.
Figure S3a shows the-component of the displacement in truncated digteatonical
nanowires with different tip radii (bottom radiu$QL nm and length 2im). Since the
structural parameters of the nanowire are fixed #m&l inverse piezoelectric effect is
negligible, these displacements are practicallytidal to those reported in Figure 3a of the
main paper. However, clearly, the piezopotentikigyre 3b and S3b) are different because
of the crucial effect of free charges; in particuléor the insulating case there are no
accumulation/depletion regions at the tip/base #edvoltage drop region extends to the
entire nanowire. Figure S3c shows the electrostmtid mechanical energy and the ratio
between electrostatic and total energies as aitundf force; in striking contrast with the

semiconductive case the paramefeiis almost constant. Figure S3d shows the voltage

difference between the tip and base of the ins\gatianowires for tensile and compressive
forces, thus confirming that the coupling of piessniconductive equations is crucial for

breaking the strain/force/pressure-voltage antiyagtny.
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Figure S1. Carrier concentration along the axis of a cyhcarnanowire (radius 150 nm and

length 2 pm) for different doping concentrationslena 442 nR? compressive force.
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Figure S2. Piezopotential along the axis of a cylindricahowaire (radius 150 nm and length
2 um) for different doping concentrations and fbe tdielectric case under a 442 4N

compressive force.
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Figure S3. Conical dielectric nanowire (bottom radius 150 nma éength 2um) surrounded
by free space and subject to compressive/tensite f@) Displacement in truncated conical
nanowires with different tip radii. b) Piezopotatat the base (left) and tip (right) of the
truncated conical nanowires. c) Electrostatic, medaal energy and ratio between
electrostatic and total energies as a functionoatd. d) Voltage difference between the tip
and base of the nanowire for tensile and compredsices: as expected the anti-symmetry is

always conserved in the dielectric case.
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