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Resistance of Feedback Amplifiers:
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Abstract—We propose a representation and a related method-
ology for evaluating the exact input and output resistances of feed-
back amplifiers. Our approach is based on the generalization of the
Rosenstark theorem. Indeed, it requires the computation of two re-
sistances (direct and asymptotic) each one evaluated in one of the
two ideal and extreme conditions of the return ratio (zero or in-
finity). Due to these characteristics, the representation allows one
to understand what happens to a feedback amplifier resistance in
the case of absence of feedback or in the ideal case of infinite feed-
back.

Index Terms—Circuit analysis, circuit modeling, circuit theory,
feedback amplifiers, feedback circuits.

I. INTRODUCTION

FEEDBACK has the property to change (increase or de-
crease) the input/output resistances (impedances) of open-

loop amplifiers [1]–[11]. And this property is widely used in the
design of electronic and microelectronics circuits [12]–[14].

As in the case of the evaluation of feedback amplifier transfer
functions, there are different methods for calculating the exact
(such as [5] and [15], [16]), or approximated (as described in
[3], [4] and [11]) input/output resistances of closed-loop ampli-
fiers. Among the approaches that lead to exact results, the most
immediate one is analyzing the circuit directly by writing the
Kirchhoff equations of the small-signal circuit. However, this
approach is computationally tedious, and does not allow one to
understand deeply how the feedback modifies the properties of
the original open-loop circuit.

Another exact approach models both the amplifier and the
feedback network with their proper two-port models [3]. How-
ever, due to the non-unidirectional nature of real circuits, the
two-port network which models each block has to be chosen ju-
diciously and, for exact results, the analysis becomes extremely
elaborate.

An interesting method to evaluate exact input and output re-
sistances of feedback amplifier was reported in [15] by Cherry.
This exact method is an extension of an approximated approach
previously presented in [2]. However, the method needs to iden-
tify the feedback network, classify the feedback amplifier in one
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of the four classical topologies [3], and properly break the loop
to evaluate the loop gain. Thus, this methodology needs an a
priori knowledge and a circuit expertise.

An efficient approach for evaluating exact input or output re-
sistances of feedback amplifiers was introduced by Blackman
in 1943 [16]. Subsequently, the technique, also included in the
textbooks [1] and [3], was revisited by Rosenstark [17], and was
developed independently by Choma through signal flow anal-
ysis [18]. Hence, the Blackman theorem represents a relevant
methodology for evaluating input and output resistances of feed-
back amplifiers even for those who make use of the Rosenstark
or the Choma method.

It is worth noting that, to the best of the authors’ knowledge,
while the analytical representation of the Choma method (which
applies for the determination of closed-loop transfer functions)
is a clear generalization of the Blackman theorem, a Rosen-
stark-like representation of resistances of feedback amplifiers
has never been proposed. Indeed, even Rosenstark in its original
manuscript suggested the use of the Blackman theorem to eval-
uate input and output resistances of feedback amplifiers [17].
However, as we shall discuss in the next section, despite its ad-
vantages that justify its remarkable fame, the Blackman theorem
has some drawbacks, too.

In this brief, we propose an alternative representation and a
related methodology for evaluating the exact input and output
resistances of feedback amplifiers. The proposed approach
comes out from a generalization of the Rosenstark representa-
tion, and provides some interesting features.

II. BLACKMAN THEOREM

Without any loss of generality, let us consider the block
schema of the amplifier in Fig. 1 and assume we want to
evaluate the resistance at gate a-b. Naming the amplifier
return ratio as , where the dependence on the external
resistor is explicitly shown, the Blackman theorem states
that [8]–[10]

(1)

In relationship (1), is the resistance at gate a-b in open-
loop configuration (more in general, when the return ratio is
zero); and are the return ratios evaluated when gate
a-b is short-circuited ( ) or left open ( ), respec-
tively.

A drawback of the Blackman representation is due to the fact
that, differently from the Rosenstark representation for the am-
plifier transfer function, it does not give any explicit information
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Fig. 1. Block schema of a feedback amplifier.

Fig. 2. General signal flow graph of a feedback circuit.

about the ideal and asymptotic value of , (i.e., when
), which becomes an important and practical parameter in

many applications. Moreover, the Blackman theorem requires
two different return ratios. Thus, even if and can be
evaluated from a more general relationship , the evalua-
tion of is a tedious task.

III. PROPOSED REPRESENTATION AND METHODOLOGY

A. Introduction to Flow Graph Analysis

Consider the linear circuit represented by the signal flow
graph shown in Fig. 2 [8], [11]. Variables and represent
the input and output signals, moreover, two other generic
variables, and , linked together through the control (or
critical) parameter , are explicitly shown. Parameters are
the weight branches. Variables , and the control parameter,

, model a controlled generator, or the relation between voltage
and current across two nodes of the circuit.

Inspecting Fig. 2, we note that term is the transfer func-
tion between the input and the output, setting the control param-
eter, , to zero; term is the transfer function between the
output and the controlled variable, , setting the input source,

, to zero; term represents the transfer function between the
source variable and the inner variable, , when the controlled
variable, , is set to zero (i.e., when the control parameter, , is
set to zero); term gives the relation between the independent
and the controlled inner variables setting control parameter, ,
and input variable, , to zero.

Writing the variables and in terms of and , we get

(2a)

(2b)

Then, exploiting the relationship and solving (2b) for
, yields

(3)

By substituting (3) into (2a), the following relationship holds:

(4)

B. Proposed Resistance Representation

Relationship (4) has general validity and we can use it to eval-
uate the resistance at gate a-b of Fig. 1, by substituting and

with voltage and current , respectively. In particular, re-
ferring to gate a-b, relationship (4) allows us to define the direct
resistance, , (or equivalently the resistance in open-loop
configuration) and the asymptotic resistance, , as those re-
sistances evaluated when the control parameter is set to zero and
infinity, respectively. Thus, we get

(5a)

(5b)

Moreover, it is apparent that once we explicitly identify the
controlled source element (represented by the controlled source
quantity, , the controlling quantity, , and the critical param-
eter , so that ), the term is the corresponding
return ratio. It is worth noting, however, that for the return ratio,
the input signal ( in Fig. 2) must be set to zero. This corre-
sponds to setting the input source, , to zero. Thus, the return
ratio must be evaluated with the gate a-b open, that is

(5c)

In conclusion, the resistance at gate a-b takes the form

(6)

Differently from the Blackman theorem, the novel represen-
tation in (6) requires the evaluation of one return ratio only.
Moreover, likewise the Rosenstark theorem, it makes use of an
asymptotic term, given by resistance , which describes the
closed-loop resistance at gate a-b when an ideal and infinite re-
turn ratio is assumed. Hence, even if the number of terms in-
volved equals those of the Blackman theorem, the proposed rep-
resentation introduces a new asymptotic term that has a clear
physical meaning and can be more useful to the designer.

C. Resistance Evaluation

To evaluate the three terms of the closed-loop resistance rela-
tionship (4), we have to explicitly identify a critical controlled
source (represented by ) and follow the steps given
below.

Step 1) Evaluation of the open-loop resistance : Turn
off the critical controlled source setting and
evaluate the resistance of the gate a-b to achieve its
open-loop value. Note that, if is associated with a



300 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 54, NO. 4, APRIL 2007

Fig. 3. Feedback amplifier example. (a) Transistor level model. (b)
Small-signal model.

controlled current (voltage) source, condition
requires an open circuit (short circuit) to replace the
branch containing the controlled source.

Step 2) Evaluation of the asymptotic resistance : Set
the critical parameter to infinity ( ) and
evaluate the resistance of the gate a-b to achieve
its asymptotic value. Under this condition, since the
controlled variable, , must be a finite quantity, the
controlling variable, , is forced to 0. Note that
the asymptotic resistance, stands for the resistance
under the ideal condition of infinite loop-gain.

Step 3) Evaluation of the return ratio : Maintain the
gate a-b open and replace the crit-
ical controlled voltage (current) source with an in-
dependent voltage (current) generator, . Then eval-
uate and the return ratio as

.

IV. EXAMPLE

In order to show the use of relationship (6), consider the
circuit in Fig. 3(a), where a common source topology with
source degeneration and a further feedback resistance, ,
is depicted. Its small-signal model, neglecting MOS output
resistance and setting to zero (i.e., shorting) the input signal
generator, is plotted in Fig. 3(b).

Assume the voltage-controlled current source as the critical
element and let the transconductance be the control param-
eter, . According to Section III, setting and inspecting
the circuit in Fig. 3(b), it is easy to find the resistance at gate a-b
which results

(7)

To evaluate the asymptotic resistance, , we first analyze
the circuit in Fig. 4, where also the current probe, , is
included, and then we add the contribution of the resistance

. In the process, we consider the critical parameter infinitely
large and, since the controlled variable, , must be a finite

Fig. 4. Simplified circuit to evaluate the asymptotic resistance.

quantity, this means setting the voltage equal to zero. Thus,
having , we can write

(8)

and, considering that , we have

(9)

Therefore, the voltage at gate a-b is

(10)

which gives

(11)

and, considering the contribution of , the final asymptotic
resistance results

(12)

It is worth noting that (12) returns the ideal zero output resis-
tance when a pure shunt connection is present (i.e., )
and returns in the case of a pure series connection (i.e.,

).
To evaluate the return ratio we first substitute the

controlled source with an independent current source,
, and then we search for the former controlling voltage, .

Voltage is given by the amount of current that flows on
due to the parallel between and , that is

(13)

whereas voltage is simply given by the product .
Therefore, we have

(14)
Finally, using relationships (7), (12), and (14) into (6), we find

resistance , as shown in (15) at the bottom of the next page.



D’AMICO et al.: RESISTANCE OF FEEDBACK AMPLIFIERS: A NOVEL REPRESENTATION 301

Fig. 5. Indefinite form example. (a) Transistor level model. (b) Small-signal
model.

V. REMARKS

A. Cases With Indefinite Form

The proposed approach seems to be very interesting, since
it overcomes the above mentioned drawbacks of the Blackman
theorem. However, in some simple cases a difficulty could arise
for the determination of an indefinite mathematical form.

For example consider the circuit shown in Fig. 5(a) and sup-
pose we want to calculate the output resistance following the
procedure discussed in Section III. The equivalent small-signal
model is shown in Fig. 5(b), where also the MOS output re-
sistance is included. The direct resistance can be immediately
derived

(16a)

To evaluate the return ratio we note that with the gate a-b
open, the current through resistance is zero thus setting
voltage to zero, also. Hence, we have

(16b)

Regarding the asymptotic resistance, if goes to infinity
and the product must remain a finite quantity, then

. As a consequence the current through , or equivalently the
probe current, is forced to be zero. Thus, we get

(16c)

Substituting (16) into (6), the indefinite form “ ” is ap-
parent.

The situation analyzed is common for some circuits which
present a series-feedback connection at the gate of interest. In
particular, it occurs when there is no shunt resistance between
the two nodes of the gate.

The drawback can be simply overcome by introducing a
dummy resistor between nodes a and b, . Then, we deter-
mine the terms , and , and, after
evaluating through (6), we have only to calculate the
limit for . Referring to the example in Fig. 5, under
this assumption (16) becomes

(17a)

(17b)

(17c)

Then (6) results in (18), shown at the bottom of the page, where
the indefinite form is no more present.

B. Admittance Complementary Form

Instead of the resistance, we can evaluate the admittance, ,
at gate a-b of a feedback circuit through the complementary
form of relationship (6). Specifically, we can evaluate (4) for the
particular case in which and are the current, , and the
voltage, , at gate a-b, respectively. Therefore, conductance
takes the form

(19)

(15)

(18)
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In this case, once we explicitly identify the controlled source
element, and are evaluated as

(20a)

(20b)

Conductance is the direct conductance, while, is
the asymptotic conductance. Parameter takes the general
form . Note, however, that in this case, setting

means setting . Hence, is evaluated when
the input source, , is zero, that is when the gate a-b is short-
circuited, namely

(20c)

It is worth noting that the use of the complementary form to
calculate the admittance of a feedback circuit could represent an
alternative way to solve the cases in which relationship (6) has
an indefinite form.

C. Resulting Properties

Once the controlled source element is explicitly defined, a
comparison between the definitions of (5a)-(5b) and (20a)-(20b)
reveals that

(21a)

(21b)

Moreover, since

(22)

substituting (5) and (20) into (22) and taking into account (21),
allows us to write

(23)

which, after manipulation, leads to

(24)

Relationship (24) is satisfied if1

(25)

which relates the four quantity discussed in the present brief.

1Equation (25) is satisfied for r = r , also. However, this solution is
unrealistic.

VI. CONCLUSION

In this brief, we have proposed an alternative representation
and a related methodology for evaluating the exact input and
output resistances of feedback amplifiers. It is a generalization
of the Rosenstark representation, and, differently from the
Blackman approach (that concentrates on one resistance, and
on two return ratio terms), our approach focuses on one return
ratio, only, and on two resistances (direct and asymptotic) each
one evaluated in one of the two ideal and extreme conditions
of the return ratio (zero or infinity). Due to this characteristic,
the representation allows one to understand what happens to a
feedback amplifier resistance in the case of absence of feedback
or in the ideal case of infinite feedback.
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