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Abstract

Due to increasing demands on the accuracy of integrated sensors, it is very important to improve the accuracy of bandgap voltage
references. Since the second order non linearity of the fun®fig(iT) is generally the main limit to the accuracy of calibrated bandgap
voltage references, several methods for the curvature-correctidge¢T) have been reported in literature; unfortunately these methods
require quite complex circuitry. In this paper we investigate a low cost curvature correction method, consisting in taking advantage of
the temperature dependence of integrated resistors and in usingRPg&lléctor currents; furthermore we introduce two new circuit
topologies which permit to take full advantage of this approach in spite of technological limitations.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction (unless differently stated we refer to npn transistors and, for
) ] convenience, the collector currents of npn (pnp) transistors
1.1. Non linearity and curvature of p£(T) are considered positive (negative) when they enter the col-

N ) lector terminal).
Measuring is to compare an unknown quantity and aref-  grom (1) we have

erence quantity; for this reason any measurement system KT I KT

must contain at least one reference; in integrated measurevygg(7) = V), + — In <_C) — nu— In(D 2)
ment systems, among all possible electrical references, volt- Cu

age references are generally the most useful and, among alfrom (2), assuming that the collector current is independent
possible voltage references, bandgap voltage references argy, temperature (which is not the case in most applications),

the most accurate. we can compute the derivatives of the base—emitter voltage
Bandgap voltage references make use of the temperaturgespect to temperature

dependence of the base to emitter voltage of bipolar transis-

tors which is best described by the Meijer mofi gl (here k Ic
. S . —dn{—) - In 1 =1
we only notice that, although the physical interpretation of 9"Vee(T) | ¢ Cu muln(D) +1]
the parameters is different, the analytical expressions given ™ ar» | nuk (=1)"1(n — 2)! 1
by the Meijer model are the same as those given by the 4 Tn—1 n=
Gummel-Poon model) A3)
KT Ic and we can therefore write the Taylor polynomial Nith
Vee(lc, ) = —In| ——, .
q Is(D order ofVge(T) in case of constant collector current
—aVm
Is =CyT™e ¥t 1 N k Ic k
D M @) Vee(T) = Vee(To) + {— In (— —nu—[In(To) + 1]
g \Cu q
) . N +1
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Although (4) provides a simple expression for the Taylor 10R

polynomial of any order o¥/gg(T), the Lagrange’s formula ~ROT (6)

of the error of the Taylor polynomial shows that the error,

when non linear terms of order higher than the second are !N [6] @ PTAT current (generated by applying a PTAT
neglected, is very small and negligible for many applications Voltage to a thermally stable resistor, FE0) is injected

[1] (for instance less than ZB x 1, wV in the temperature into gtemperature dependent resistor therefore prodycing a
range [250, 350 K]); even if this result has been derived only NON linearly temperature dependent voltage, which is used
for a constant collector current, it somehow holds for the 0 compensate the non linearity ®Be(T); an improved
“practical” collector currents used in integrated circuits, so Version of this technique was presented[2j where the

that the non linear terms of order higher than the second areShunt connection of two different resistor types, each with
important only for very high accuracy applications and/or for its own TC and linearly temperature dependent, was used
very large temperature ranges. For this reason (the second® produce a non linearly temperature dependent resistor, so
order derivative gives the, by far, dominant non linear error) that higher order non linear terms may also be compensated.
the reduction of the non linearity ofge(T) is generally A similar approach consists in the generation of a refer-
referred to as “curvature correction”; we will also adopt this €Nnce current (a reference voltage is applied to a thermally
nomenclature (on the contrary the expression “third order stable resistor); the reference current is injected through re-
curvature correction]2,3] is not correct since, strictly, the sistors with intrinsic non linear temperature dependence (for

curvature is related to the second order derivative). instance lightly do_ped drain diffused resistors) in order to
generate the non linearly temperature dependent voltage re-

o ) ) ) quired to compensate the non linearity\ae(T) [7,8].
1.2. Existing curvature correction and non-linearity Recently, it has been noted that simply using in a standard
correction methods Brokaw cell (or in similar circuit topologies) resistors with
) ] negative TC “instead of the usual positive TC resistors,

The bandgap voltage references are typically obtained by a5ty improves the curvature of the bandgap cirdi@} this
adding, with properly chosen coeffic_ients, a base to emitter improvement was accomplished by just properly selecting
voltage,Vge(T), and a PTAT (proportional to absolute tem-  he resistor type to be used in standard circuit topologies.
perature) voltage. PTAT voltages may be easily generated in Many other techniques have been presented, such as: to
integrated circuits by biasing two matched transistors with employ the temperature dependence of the current gain of
two cu_rrents whose ratio, is temperature independ_ent and bipolar transistorfl0]; to use the p(Vps) relation of MOS-
by taking the difference between two base to emitter volt- g1 [11-13] to use a piecewise linear correction voltage

ages, so that the voltage [14,15} to generate currents proportional to higher powers
of the absolute temperature by using PTAT currents (gener-
1 I ; o
AVee(T) = VrIn (g) — Vrin (il) ated by applymg a PTAT yoltage to a thermally stable resis
Is1 tor) and translinear circuitel6]; to use a collector current

Ico Ic = CxT"™ so that the base to emitter voltage becomes
=Vrin (E) = Vrin(» () a linear function of the temperature (since the direct im-
plementation of this idea is rather difficult, more practical
is PTAT. implementations have been propo$¢d-19).
In practical circuits theAVag(T) voltages are quite ac- Although several techniques are available, all these tech-

curately proportional to the absolute temperature (and thennigues generally require quite complex circuitry and cali-
they are linearly temperature dependent); on the contrary,brationv which may be unacceptable in applications where
the non linearity okgg(T) constitutes the main limit to ther- 10w cost and small area are fundamental issues.
mal stability of calibrated bandgap references. For this rea-
son many techniques for the correction of the non linearity 1.3. Organization of the paper
of Vge(T) have been presented.
In [4] it has been reported (without explanation) that ~ Among the methods above mentioned, using PRXJaI-
a reduction of the non linearity o¥ge(T) is obtained if lector currents and taking advantage of the temperature de-
PTAT collector currents are used; we also stress that in mostpendence of integrated resistors are very convenient for low
bandgap circuits a PTAR/ collector current is used (the ex- cost integrated systems because they do not require any ad-
pression PTATR [5] puts in evidence that the collector cur- ditional circuitry and may be implemented using standard
rent is not really PTAT sinc® depends on temperature). circuit topologies. Although both these approaches are yet
It is also possible to reduce the non linearity\&g(T) known, a satisfactory theoretical analysis of their poten-
by taking advantage of the temperature dependence of in-tialities and limits has not yet been reported, resulting in
tegrated resistors, which is generally expressed by mean ofsub-optimal curvature correction.
the relative temperature coefficient (TC) of resistors, defined In this paper we present a study on the effects on curvature
as follows of the temperature dependence of collector currents.
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Since optimal curvature correction would typically re- wherea andg are the TCs at the temperaturg of, respec-
quire resistors with very large absolute values of the TC (not tively, V andR. It may then be found

available in many processes), we introduce two new circuit PVee(To)  k

topologies which overcome this technological limitation by Yz~ }

mean of a virtual resistor (with high absolute value of the q

TC); the use of virtual resistors requires calibration, and 9?Vgg(Ty)/8T? (and therefore the curvature Gge(T)) may
therefore a single temperature autocalibration procedure isbe zeroed if and only if

{2<a — B) + To(B% — a?) —

described and the consequences of the spread of TCs of in-

tegrated resistors are discussed.

2. The effect of the temperature dependence of the
collector current on the curvature of Vge(T)

2.1. Non linear error and total non linear error

In order to quantify the non linearity &gg(T) in a given
temperature range (TR), we define the non linear error as
the difference betweeYge(T) and its (least squares) linear
fit computed in the given TR.

Furthermore we define the total non linear error in TR as
the difference between the maximum and the minimum non
linear errors in TR.

2.2. Determination of the first, second and third order
derivatives of Vg (T) in case of temperature dependent
collector current

o?TZ — 2aTo + ny + 28To — BT =0

(10)

For simplicity it is better to suppose that only one resistor
type, with its own TC,3, is available (this hypothesis will
be removed later on), so thaVge(7o)/972 is a function

of @ and, in particular, is a paraboja («); as a consequence
the following two cases are possible:

1. The parabolg(«¢) may be zeroed for the values

200+ \JATZ — 4T3 (nu + 28To — F2T3)
21¢
1 /1~ G + 28To — B213)
Tp

o12=

(11)
However, sincer must be a real numbe? Vage(To) /072
may only be zeroed if

1— (qm+2BTo — P13 = B?TE — 2BTo+1—nyu > 0
C

1-/nu 1+ /nm
_ , ps—/7—— o Bz ——
In most practical cases the collector current is somehow To To
temperature dependent; in this general case we obtain (12)
oVee(l) k Ic 1 9dlc
=—1iIn{= T—— — In 1
o7 p C + Tc oT nu [In(T) + 1]
3V, k. 101 -1 /0Ic\* 1 I 1
e _Klpldle gl 3 (Uey Lo, 2
aT q Ic 0T I& oT Ic oT T
BVee(D k [-3/01c\?> 3 I 2 (3lc\® 3 alc#lc 13 1
s = V2 \37) ot Bm\5r) oo tiiae | Tz @)
aT q | I aT Ic oT I2 oT I aT oT Ic oT T

From (7) it may be observed that, even in case of temperature

dependent collector currents, the non linear terms do not
depend on the collector current level, that is they do not
change if the collector current is multiplied by a constant (in
fact, if we subtract twd/gg voltages generated by applying
to two matched transistors two proportional currents, the non
linear terms are cancelled and a PTAT voltage is obtained).

2.3. Analysis of the curvature ofg¥(T) in case of collector
current generated by applying a linearly temperature
dependent to a linearly temperature dependent voltage

Let us consider a collector current obtained by applying a
linearly temperature dependent voltagéo a linearly tem-
perature dependent resis®rin general we may write

VoIl 4+ (T — To)]
c= (8)
Ro[1 + B(T — To)]

For typical values of the Meijer parametey; (3—6),
both these conditions are quite hard to be accomplished;
for instance

[n =3, To =300K] — [B < —2433 ppmK or
B = 9106 ppm/K] a
[n =6, To = 300K] — [B < —4831ppmK or
B > 11,498 ppm/K]

3)

The parabolap;(«) 92Vee(Tp)/dT? may not
be zeroed; in this case it is evident from (9) that
pi(@) < OVa € R and the minimum of|pi(a@)| =
182Ve(To)/0T?| occurs fora = 1/ To, so that the volt-
age

2.
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V() = Vo(1+ (T — Tp)) = Vo |:1 + TiO(T — To):|

T
=Vo—

i (14)

is a PTAT voltage (and therefore the collector current is a
PTAT/R current)
We stress that, if the conditions (12) may not be satisfied,

C. Falconi et al./Sensors and Actuators A 117 (2005) 127-136

As a resultd’Vge(Tp)/dT? is a parabolaps(8) which as-
sumes the zero value for
1+ /1-Tod—nu/To) 1+ m
p= T - T
0 0

(18)

As we discussed, for typical values of the Meijer parameter
num, the conditions (12) (and therefore also the conditions
(18)) may not be satisfied in most processes; however ele-

even in presence of a non linear temperature dependence Ofnentary geometric considerations show that in this case, if

the resistors, it is anyway convenient, from the point of view
of the curvature correction (i.e. minimisation of the second
order derivative), to use PTAR/collector currents; in fact,

if we consider

Vo[l + a(T — To)]

I = 15
© 7 Ro[l + po(T — To) + Bo(T — T2)] (15)
then we find
2Vee(To) Kk
= {2(a—ﬂ1> + To(Bf — o® — 282) - Tio}
(16)

and, again, elementary geometric considerations on the

parabolapy (o) = 8%Vee(To)/0T? show that, if it is not
possible to zergz(«), the minimum of| p2(«)| occurs for
a = 1/Ty (that is when the collector current is a PTRT/
current).

We notice that in fact PTAR currents are used in most
bandgap reference circuits; however the reduction of the cur-
vature deriving from this choice has been mentioned only in
[4,20], but without explanation and with reference only to
true PTAT currents (we proved that it also holds for PTRT/
currents, that is currents generated by applying a PTAT volt-
age to a temperature dependent resistor).

2.4. Selection of the best resistor type for curvature
correction

In case the conditions (12) may not be satisfied it is also
important to identify which kind of resistor type, among the
many normally available, should be used in order to min-
imise the curvature. Recently the following experimental
result has been reported (without explanation): using, in a
standard Brokaw cell (or in similar circuit topologies), re-
sistors with negative TC “instead of the usual positive TC
resistors, . ., vastly improves the curvature of the bandgap
circuit” [9]. We want to give reasons of this experimental
result and to show how to select the best resistor type (from
the point of view of curvature correction).

In most cases different kinds of resistor types, each with a
different TC, are available but no resistor type satisfies (12);
however, since for any of these resistor types it is convenient
to use a PTATR collector current, we may substitute=

1/ Ty in (9) obtaining

PVee(To) _ k

2—1—num
= T0,32—2,3+<—
oT? q{

To

(17)

many resistor types, each with its own T, are available,

then the minimum oflp3(B)| = [8%Vee(Tp)/dT?| occurs
when g, minimises the quantitg; defined as follows

. 1-./n 1+. /7
dk=m|n{ﬁk—TM, ‘ﬁk—TM} (19)

If, for instance, we assume the typical values

n=3, To=2300K (20)

then the second order non linearity (curvature)Vgg(T)
may be zeroed by using resistors with

TCideal1,2 = P12 = 1%02 = { _1335’303 FEJFI?:YV; (21)
On the other hand, if we only have resistors with

Br, = TCg, = 1000 ppmK

Br, = TCg, = 600 ppmyK (22)

Brs = TCg, = —600 ppmyK
,3R4 = TCR4 —1000 ppmK

the best possible curvature correction (within this method)
is achieved if the collector current is generated by applying
a PTAT voltage to a resistor of the fourth group. In most
processes, for typical values of the Meijer parametgy, (
the best resistor type will be the one with the most negative
TC (in agreement with the experimental results reported in
[9D).

Figs. 1-3show the typical non linear errors (the parameter
ny has been set to 3) obtained by using different collector
currents in the temperature range [250, 350K]. In all these
figures the solid line refers to a constant collector current and
the dashed lines refer to PTAcollector currents where
the TC of the resistor changes%000,—2500 and 0 ppm/K
in Fig. 1, 0, 2500 and 5000 ppm/K iRig. 2 5000, 7500 and
10,000 pm/K inFig. 3).

FromFig. 1itis evident that if a PTATR collector current
is used with a TC equal te-2500 ppm/K the curvature is
strongly reduced.

Fig. 4 shows the total non linear error (above defined) as
a function of the TC of resistances. It is evident the presence
of two minima, but it is clear that it is impossible to zero the
total non linear error (in fact, even #Vge(7o)/0T2 = 0,
other higher order non linear terms are present).

Let us now suppose that we are able to generate a
PTAT/R collector current using a resistor whose TC may be
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Non linear error, [mV]
Non linear error, [mV]

50 300 350 -1

Temperature, [K] 250 Temp:r(:zure K] 350

Fig. 1. The non linear error as a function of the temperature for a constant
collector current (solid line) and for different PTAX/collector currents
(dashed lines; the TC of the resistor varies fretS000 up to 0 ppm/K);

the Meijer parameten,, has been considered equal to 3.

Fig. 3. The non linear error as a function of the temperature for a
constant collector current (solid line) and for different PTRTollector
currents (dashed lines; the TC of the resistor varies from 5000 up to
10,000 ppm/K); the Meijer parametgj, has been considered equal to 3.

arbitrarily defined (later on we will discuss possible circuit
solutions); fromFig. 4 it is evident that the two solutions
(14) are not equivalent (in one case the total non linear error , _ 11 _ 1+ V3 _ { —2440 ppmK (24)
is much smaller). Another significant difference between To To 9106 ppmK

the two solutions is the tolerance on TCs which permits to The derivatives of order higher than the second may also
achieve a predefined performance; for instance, if the total ;\troquce non negligible errors; we may compute

non linearity error must be kept below 0.5mV we should

linearities) with the theoretical values

satisfy one of the two conditions B Vae (T, k
d TVeetTo) _ £ doma® — 6% — 3662 — 2 + 2L
A = (—3500 ppmK < B < —1000 ppmK) 23) or q T3
B = (7500 ppmK < f < 9300 ppmK) (25)
so that, beside better performance (as it is clear firagn4), If the collector current is a PTAR current, then we have

the solutionA also gives better results from the point of « = 1/Tp, so that
view of rejection of spread of TCs. We note that (23) are

3 _
in agreement (discrepancies are due to higher order non% = f —2ToB% +38% + " 21 (26)
T
0
S
E S
P E
9 -
5 5
® 5
(3] —
= ©
=] )
= £
g £
z S
c
IS
°©
}_
250 300 350 0 . ‘ ‘ . ‘
Temperature, [K] -10000  -5000 0 5000 10000 15000

TC, [ppm/K]
Fig. 2. The non linear error as a function of the temperature for a constant

collector current (solid line) and for different PTAX/collector currents Fig. 4. The total non linear error (in the temperature range [250, 350K]) as
(dashed lines; the TC of the resistor varies from 0 up to 5000 ppm/K); a function of the TC of the resistor used to generate the PRADIllector
the Meijer parameten,, has been considered equal to 3. current; the Meijer parametery has been considered equal to 3.
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This relation may be used to identify the “best” solution tions for tuning TCs of integrated resistances exist, in most
among (18) from the point of view of better reduction of the cases TCs of the basic resistor types are fixed (by the given
third order non linearity errors (the solution with minimum process).
|83Vae(To) /T3] should be chosen). It is possible, in principle, to design resistive (one port)

In conclusion, the two solutions which zero the curvature networks constituted by resistors of different types; the TC
are not completely equivalent, since if we take into account of the final resistive (one port) network may be tuned but
other non idealities (such as the spread of TCs, the non lin-the maximum absolute value of this TC may not be very
ear temperature dependence of resistances, the higher orddarge (see later). For this reason we introduce two different
derivatives ofVgg(T), ...) one of those solutions is prefer- bandgap circuit topologies.
able. Although we have shown the theoretical method for
the selection of the “best” choices (from the point of view 3.1. Arbitrary resistive networks
of the spread of TCs, the non linear temperature dependence
of resistances, the higher order derivatives/gg(T), ...), Since resistors with different TCs are generally available,
in practical applications, it is better to use an analog simu- it is possible to realise a resistor by using arbitrary connec-
lator which is able to take into account many other non ide- tions of different basic resistor types. If, for instance, two
alities which may introduce additional non linearities (such resistorsRy andRy are connected in series (the analysis of
as the finite current gain of the transistor, parasitic base andTCs of two series or shunt connected resistors has yet been
emitter resistors,. .). reported in[21]), we have

Finally we give a design guideline for the optimal curva-
ture correction obtainable by using a generic collector cur- R (T) = Rio[1+ p1(T — To)] + Rzo[1+ B2 (T — To)]

rent of the form =Ro[1+ B(T — To)] (30)
I Vo(l + a(T — Tp)) 27)
C =
Ro[L + B(T — To)] where
If there are one or more resistor types satisfying the condition ~° :Rli(l)%;r +R12?°20 5 (31)
1—./ 1+ ./ =
ﬂanM or ﬂz% (28) Ri0+ R2o
0 0

) If two resistorsR; andRy, are shunt connected, we have
(a) The “best” among those resistor types must be selected

(use an analog simulator).

(b) @ must be tuned so that it is equal to the “best” (use an

analog simulator) among the two values.

1 /1 (qus +28To — 2T)
Tp

12 = (29)

If, as it is usually the case, there is no resistor type satis-

fying the condition (28) then

(@) PTATR collector current must be used.

(b) The resistor type having the “best” TC must be selected

(use an analog simulator).

In the second case only a partial curvature correction may

be achieved; however this is obtained “for free” (without

additional components, calibration or increased design com-
plexity) just by properly selecting the resistor type to be used

in a standard bandgap circuit.

As we discussed, a practical obstacle to curvature correc-g — ¢g; + (1 — ¢)82
tion is the lack of resistors with large absolute values of the

_ Raofl + Ba(T = To)] X Roo[l + B2(T — To)]
R10[1 + B1(T — To)] + R2o[1 + B2(T — To)]
(32)

and it is evident that, in the general caB€T) is not linear

with temperature. It is however possible to approxiniB
with its Taylor polynomial of the first order, that is

R10R20
R(T) >~ Ro[1 + B(T — To)] Ro=R(To) = ———
[L+8 ) R10+ R20
f 1 9R(To) _ Rio+ Rao
R(Tp) oT R10R20
R10p2 + RooB1
X RlORZOﬂ—é
(R10+ R20)
R R
_ Riof2 + Raops (33)
Ri0+ R20
In both cases (series and shunt connections) we may write
(34)

TC: in the next sections we will discuss how to circumvent Where 0< ¢ < 1.

this technological limitation.

3. Implementation of virtual resistors with large
absolute values of the TC

3% Vge(To)/dT? could be zeroed if TCs of resistances may

be arbitrarily tuned; however, although technological solu-

As a consequence, in both cases we find
min{B1, B2} < B < max{B1, B2}

(35) may be generalized as follows: the Bf a resistor
constituted by an arbitrary resistive networks where each
resistorR; has its own TC §; satisfies

min{B1, B2, ..., Bn} = B < maxX{pi, B2, ... , Bn}

(35)

(36)
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Itis then impossible, by using arbitrary resistive networks, to
obtain an absolute value of the TC larger than the maximum
absolute value of the TCs of the basic resistor types. As a
result, if the conditions (12) may not be satisfied by using
one of the basic resistor types, it is also impossible to satisfy
(12) by using an arbitrary resistive network.

The parameterin (34) may be tuned to any valueQ¢ <
1 depending on values & ¢/Rxg (but not on absolute values
of Ryp and of Ryg); on the other hand, since resistd®s
andR; are of different types, tolerance on the ral@/Rzo
is generally large, thus requiring calibration for accurate
control of c (and therefore for accurate control gy.

3.2. The anti-series virtual resistor

We may in principle use a collector current
Vrin(r) Vrin(r)
““Ri-R R
that is a PTATR current (where the effective resistanRe

37

133

On the other hand a practical limit arises from (37): since
the collector current must be positive, we need

R1(T) > Ro(DVT € TR (43)

which limits the possibility to obtain indefinitely large ab-
solute values of TCs (however large absolute values of TCs
may still be obtained).

We may rewrite (40) as

_ RioB1— RooB2  rof1— P2
R10— R20 ro—1

Even in this case, although (41) shows that compensation of
curvature only requires to fix a resistor ratio (at the temper-
atureTp), since resistor&; and Ry are of different types,
the accurate control of their ratiog, requires calibration.

A possible CMOS circuit which accomplishes (37) is
shown inFig. 5; in this circuit a regular PTAT voltage is
added to the base to emitter voltage of a transistor whose
collector current is given by (37).

The operational amplifier establishes the relation (for sim-

B

(44)

is the difference between two physical resistances). In Orderplicity we assume perfect matching BfL andM2 and we

to stress thaR is not a physical resistor, we refer Bas
a virtual resistor; furthermore, since the virtual resistor is

obtained as the difference between two resistors, we call this VEB1 + R1lc = Vep2 + Rzlc

neglect the base currents)

the anti-series virtual resistor.The temperature dependence[hat is

of the anti-series virtual resistan&eis given by

R(T) = R10[1 + B1(T — To)] — Roo[1 + BT — Tp)]

= Ro[1 + A(T — To)] (38)
where
Ro=Ri0— R2o
B 1 AR(Tp) _ R10B1 — R2082 (39)
R(Tp) oT R10— R20

The TC, B, of the virtual resistoR is not forced to satisfy
(35), and in principle any desired value@fincluded values
given by (18) which allows to zerd? Vge(Tp)/9T2) may be
obtained; in fact the condition

_ RioB1 — Roop2
R10— R20

is satisfied if the resistor ratio (at room temperatugeis

= PBdesired (40)

_ ﬂ) _ P2 — Bdesired
R2o /31 - ﬂdesired
Sincerg is a resistor ratio, it must be positive, that is

{ o
{[(B2 = Bdesired and(B1 > Pdesired] OF
[(B2 < Bdesired and(B1 < Bdesired]}
However, since typically the absolute value @fesired IS

much larger than the absolute values of integrated (physical)
resistances, the conditions (42) are generally satisfied.

ro (42)

B2 — Bdesired -

161 - ,Bdesired B
(42)

(45)

Ic Ic

Vrin (—) + Rilc=Vrin (—) + Rolc (46)
Is1 Is2

or
I

Vrin (%) = Vrin(r) = (R1 — Ro)Ic (47)
S2

which gives (37).
Clearly it is fundamental to make sure that, in the operative
conditions range TR,

Ri(T) > Ro(DVT € TR (48)

We notice that ifR; andRy are (almost) linearly dependent
on temperature, the anti-series virtual resi®also shows
an (almost) linear temperature dependence.

Finally we observe that the proposed circuit is a general-
ization of a very standard CMOS bandgap reference (which
is obtained by just setting the resis®yf at zero).

3.3. The anti-shunt virtual resistor

We may in principle use a collector current

o Vring)

R1—R>
c i

R1R>

= Vrin(r) (49)

that is a PTATR current; in this case the virtual resist@r
is given by
R1R>

R=—""—
R1— R

(50)

so we refer to it as the anti-shunt virtual resistor.
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Fig. 5. Bandgap reference circuit for the implementation of an anti-series virtual resistor.

The temperature dependence of the anti-shunt virtual re-
sistanceR is given by

R(D) = R10[1 + B1(T — To)]R20[1 + Bo(T — To)]
R10[1 + B1(T — To)] — Roo[1 + B2(T — To)]

= Ro[1 + B(T — To)] (51)
where
R10R
Ro= 10R20
R10— R20
1 0R(To) _ RioB2 — Raopa
= = (52)
R(Tp) oT R10— R20
In this case, it is possible to impose
R10B2 — Roop
R1io— Rxo Bdesired ( )
by fixing the resistor ratio (at room temperaturg)
R _ .
ro = 10 P1 — Bdesired (54)

B R20 B B2 — Bdesired

The circuit inFig. 6 may be used to obtain a PTAItol-
lector current with an anti-shunt virtual resistor. We men-
tion that two different PTATR current sources are necessary,
since the resistoR; andR; are in general different (then it
is not possible to use a single PTAT¢urrent source and a
current mirror). Clearly it is fundamental to make sure that,
in the operative conditions range TR, we have

R1(T) > Roy(DVT € TR (55)

We notice that, in contrast with the case of the anti-series
virtual resistor, even iRy andR; are linearly dependent on
temperature, the anti-shunt virtual residkanay show a non

Finally we observe that the proposed circuit is a general-
ization of a very standard bandgap reference (which is ob-
tained by just replacing the resistey with an open circuit).

3.4. Effects of the spread of the TCs of the resistors

The spread of the TCs of the resistd®s and Ry will
introduce an error in the TC of the virtual resistor; as an
example in the case of the anti-series virtual resistor we have

= R10B1 — R20B2 _ rof1 — B2

Rio— Rao o1 =c181 — 282
) )
dp = ﬁi dpy + ﬁf; dB2 = c1dBy — c2dBz (56)

FromFig. 4 we see that, even if we take into account such
tolerance, it is still possible to strongly reduce the curvature.

[Vdd ——

PTAT/R2 @
V_REF

g n*R2

PTAT/R1 Ql

L

linear temperature dependence’ which Clearly may affect theFig. 6. Bandgap reference circuit for the implementation of an anti-shunt

non linearity ofVgg(T).

virtual resistor.
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4. Single temperature auto-calibration procedure Aguilar, Fabiano Fruett, Kofi Makinwa, Wibo van Noort,
Michiel Pertijs and Guijie Wang for useful discussions and
It has been shown that tuning of TC is achieved by tuning suggestions.
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