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Abstract

Due to increasing demands on the accuracy of integrated sensors, it is very important to improve the accuracy of bandgap voltage
references. Since the second order non linearity of the functionVBE(T) is generally the main limit to the accuracy of calibrated bandgap
voltage references, several methods for the curvature-correction ofVBE(T) have been reported in literature; unfortunately these methods
require quite complex circuitry. In this paper we investigate a low cost curvature correction method, consisting in taking advantage of
the temperature dependence of integrated resistors and in using PTAT/R collector currents; furthermore we introduce two new circuit
topologies which permit to take full advantage of this approach in spite of technological limitations.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Non linearity and curvature of VBE(T)

Measuring is to compare an unknown quantity and a ref-
erence quantity; for this reason any measurement system
must contain at least one reference; in integrated measure-
ment systems, among all possible electrical references, volt-
age references are generally the most useful and, among all
possible voltage references, bandgap voltage references are
the most accurate.

Bandgap voltage references make use of the temperature
dependence of the base to emitter voltage of bipolar transis-
tors which is best described by the Meijer model[1] (here
we only notice that, although the physical interpretation of
the parameters is different, the analytical expressions given
by the Meijer model are the same as those given by the
Gummel–Poon model)
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(unless differently stated we refer to npn transistors and, for
convenience, the collector currents of npn (pnp) transistors
are considered positive (negative) when they enter the col-
lector terminal).

From (1) we have

VBE(T) = VM + kT
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From (2), assuming that the collector current is independent
on temperature (which is not the case in most applications),
we can compute the derivatives of the base–emitter voltage
respect to temperature
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and we can therefore write the Taylor polynomial ofNth
order ofVBE(T) in case of constant collector current
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Although (4) provides a simple expression for the Taylor
polynomial of any order ofVBE(T), the Lagrange’s formula
of the error of the Taylor polynomial shows that the error,
when non linear terms of order higher than the second are
neglected, is very small and negligible for many applications
[1] (for instance less than 28.72×ηM �V in the temperature
range [250, 350 K]); even if this result has been derived only
for a constant collector current, it somehow holds for the
“practical” collector currents used in integrated circuits, so
that the non linear terms of order higher than the second are
important only for very high accuracy applications and/or for
very large temperature ranges. For this reason (the second
order derivative gives the, by far, dominant non linear error)
the reduction of the non linearity ofVBE(T) is generally
referred to as “curvature correction”; we will also adopt this
nomenclature (on the contrary the expression “third order
curvature correction”[2,3] is not correct since, strictly, the
curvature is related to the second order derivative).

1.2. Existing curvature correction and non-linearity
correction methods

The bandgap voltage references are typically obtained by
adding, with properly chosen coefficients, a base to emitter
voltage,VBE(T), and a PTAT (proportional to absolute tem-
perature) voltage. PTAT voltages may be easily generated in
integrated circuits by biasing two matched transistors with
two currents whose ratio,r, is temperature independent and
by taking the difference between two base to emitter volt-
ages, so that the voltage
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is PTAT.
In practical circuits the�VBE(T) voltages are quite ac-

curately proportional to the absolute temperature (and then
they are linearly temperature dependent); on the contrary,
the non linearity ofVBE(T) constitutes the main limit to ther-
mal stability of calibrated bandgap references. For this rea-
son many techniques for the correction of the non linearity
of VBE(T) have been presented.

In [4] it has been reported (without explanation) that
a reduction of the non linearity ofVBE(T) is obtained if
PTAT collector currents are used; we also stress that in most
bandgap circuits a PTAT/R collector current is used (the ex-
pression PTAT/R [5] puts in evidence that the collector cur-
rent is not really PTAT sinceR depends on temperature).

It is also possible to reduce the non linearity ofVBE(T)
by taking advantage of the temperature dependence of in-
tegrated resistors, which is generally expressed by mean of
the relative temperature coefficient (TC) of resistors, defined
as follows

TC = 1

R

∂R

∂T
(6)

In [6] a PTAT current (generated by applying a PTAT
voltage to a thermally stable resistor, TC= 0) is injected
into a temperature dependent resistor therefore producing a
non linearly temperature dependent voltage, which is used
to compensate the non linearity ofVBE(T); an improved
version of this technique was presented in[2] where the
shunt connection of two different resistor types, each with
its own TC and linearly temperature dependent, was used
to produce a non linearly temperature dependent resistor, so
that higher order non linear terms may also be compensated.

A similar approach consists in the generation of a refer-
ence current (a reference voltage is applied to a thermally
stable resistor); the reference current is injected through re-
sistors with intrinsic non linear temperature dependence (for
instance lightly doped drain diffused resistors) in order to
generate the non linearly temperature dependent voltage re-
quired to compensate the non linearity ofVBE(T) [7,8].

Recently, it has been noted that simply using in a standard
Brokaw cell (or in similar circuit topologies) resistors with
negative TC “instead of the usual positive TC resistors,. . . ,
vastly improves the curvature of the bandgap circuit”[9]; this
improvement was accomplished by just properly selecting
the resistor type to be used in standard circuit topologies.

Many other techniques have been presented, such as: to
employ the temperature dependence of the current gain of
bipolar transistors[10]; to use theID(VDS) relation of MOS-
FET [11–13]; to use a piecewise linear correction voltage
[14,15]; to generate currents proportional to higher powers
of the absolute temperature by using PTAT currents (gener-
ated by applying a PTAT voltage to a thermally stable resis-
tor) and translinear circuits[16]; to use a collector current
IC = CXTηM so that the base to emitter voltage becomes
a linear function of the temperature (since the direct im-
plementation of this idea is rather difficult, more practical
implementations have been proposed[17–19]).

Although several techniques are available, all these tech-
niques generally require quite complex circuitry and cali-
bration, which may be unacceptable in applications where
low cost and small area are fundamental issues.

1.3. Organization of the paper

Among the methods above mentioned, using PTAT/Rcol-
lector currents and taking advantage of the temperature de-
pendence of integrated resistors are very convenient for low
cost integrated systems because they do not require any ad-
ditional circuitry and may be implemented using standard
circuit topologies. Although both these approaches are yet
known, a satisfactory theoretical analysis of their poten-
tialities and limits has not yet been reported, resulting in
sub-optimal curvature correction.

In this paper we present a study on the effects on curvature
of the temperature dependence of collector currents.
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Since optimal curvature correction would typically re-
quire resistors with very large absolute values of the TC (not
available in many processes), we introduce two new circuit
topologies which overcome this technological limitation by
mean of a virtual resistor (with high absolute value of the
TC); the use of virtual resistors requires calibration, and
therefore a single temperature autocalibration procedure is
described and the consequences of the spread of TCs of in-
tegrated resistors are discussed.

2. The effect of the temperature dependence of the
collector current on the curvature of V BE(T )

2.1. Non linear error and total non linear error

In order to quantify the non linearity ofVBE(T) in a given
temperature range (TR), we define the non linear error as
the difference betweenVBE(T) and its (least squares) linear
fit computed in the given TR.

Furthermore we define the total non linear error in TR as
the difference between the maximum and the minimum non
linear errors in TR.

2.2. Determination of the first, second and third order
derivatives of VBE(T) in case of temperature dependent
collector current

In most practical cases the collector current is somehow
temperature dependent; in this general case we obtain
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From (7) it may be observed that, even in case of temperature
dependent collector currents, the non linear terms do not
depend on the collector current level, that is they do not
change if the collector current is multiplied by a constant (in
fact, if we subtract twoVBE voltages generated by applying
to two matched transistors two proportional currents, the non
linear terms are cancelled and a PTAT voltage is obtained).

2.3. Analysis of the curvature of VBE(T) in case of collector
current generated by applying a linearly temperature
dependent to a linearly temperature dependent voltage

Let us consider a collector current obtained by applying a
linearly temperature dependent voltageV to a linearly tem-
perature dependent resistorR; in general we may write

IC = V0[1 + α(T − T0)]

R0[1 + β(T − T0)]
(8)

whereα andβ are the TCs at the temperatureT0 of, respec-
tively, V andR. It may then be found

∂2VBE(T0)

∂T 2
= k

q

{
2(α − β) + T0(β

2 − α2) − ηM

T0

}
(9)

∂2VBE(T0)/∂T
2 (and therefore the curvature ofVBE(T)) may

be zeroed if and only if

α2T 2
0 − 2αT0 + ηM + 2βT0 − β2T 2

0 = 0 (10)

For simplicity it is better to suppose that only one resistor
type, with its own TC,β, is available (this hypothesis will
be removed later on), so that∂2VBE(T0)/∂T

2 is a function
of α and, in particular, is a parabolap1(α); as a consequence
the following two cases are possible:
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However, sinceα must be a real number,∂2VBE(T0)/∂T
2
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For typical values of the Meijer parameterηM (3–6),
both these conditions are quite hard to be accomplished;
for instance
[η = 3, T0 = 300 K] → [β ≤ −2433 ppm/K or

β ≥ 9106 ppm/K]

[η = 6, T0 = 300 K] → [β ≤ −4831 ppm/K or

β ≥ 11, 498 ppm/K]

(13)

2. The parabolap1(α ) = ∂2VBE(T0)/∂T
2 may not

be zeroed; in this case it is evident from (9) that
p1(α) ≤ 0∀α ∈ R and the minimum of|p1(α)| =
|∂2VBE(T0)/∂T

2| occurs forα = 1/T0, so that the volt-
age
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V(T) = V0(1 + α(T − T0)) = V0
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is a PTAT voltage (and therefore the collector current is a
PTAT/R current)

We stress that, if the conditions (12) may not be satisfied,
even in presence of a non linear temperature dependence of
the resistors, it is anyway convenient, from the point of view
of the curvature correction (i.e. minimisation of the second
order derivative), to use PTAT/R collector currents; in fact,
if we consider

IC = V0[1 + α(T − T0)]

R0[1 + β1(T − T0) + β2(T − T 2
0 )]

(15)

then we find
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and, again, elementary geometric considerations on the
parabolap2(α) = ∂2VBE(T0)/∂T

2 show that, if it is not
possible to zerop2(α), the minimum of|p2(α)| occurs for
α = 1/T0 (that is when the collector current is a PTAT/R
current).

We notice that in fact PTAT/R currents are used in most
bandgap reference circuits; however the reduction of the cur-
vature deriving from this choice has been mentioned only in
[4,20], but without explanation and with reference only to
true PTAT currents (we proved that it also holds for PTAT/R
currents, that is currents generated by applying a PTAT volt-
age to a temperature dependent resistor).

2.4. Selection of the best resistor type for curvature
correction

In case the conditions (12) may not be satisfied it is also
important to identify which kind of resistor type, among the
many normally available, should be used in order to min-
imise the curvature. Recently the following experimental
result has been reported (without explanation): using, in a
standard Brokaw cell (or in similar circuit topologies), re-
sistors with negative TC “instead of the usual positive TC
resistors,. . . , vastly improves the curvature of the bandgap
circuit” [9]. We want to give reasons of this experimental
result and to show how to select the best resistor type (from
the point of view of curvature correction).

In most cases different kinds of resistor types, each with a
different TC, are available but no resistor type satisfies (12);
however, since for any of these resistor types it is convenient
to use a PTAT/R collector current, we may substituteα =
1/T0 in (9) obtaining
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As a result∂2VBE(T0)/∂T
2 is a parabolap3(β) which as-

sumes the zero value for
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As we discussed, for typical values of the Meijer parameter
ηM , the conditions (12) (and therefore also the conditions
(18)) may not be satisfied in most processes; however ele-
mentary geometric considerations show that in this case, if
many resistor types, each with its own TC,βk, are available,
then the minimum of|p3(β)| = |∂2VBE(T0)/∂T

2| occurs
whenβk minimises the quantitydk defined as follows
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If, for instance, we assume the typical values

η = 3, T0 = 300 K (20)

then the second order non linearity (curvature) ofVBE(T)
may be zeroed by using resistors with

TCideal 1,2 = β1,2 = 1 ± 2

T0
=
{

−3333.3 ppm/K

10, 000 ppm/K
(21)

On the other hand, if we only have resistors with

βR1 = TCR1 = 1000 ppm/K

βR2 = TCR2 = 600 ppm/K

βR3 = TCR3 = −600 ppm/K

βR4 = TCR4 = −1000 ppm/K

(22)

the best possible curvature correction (within this method)
is achieved if the collector current is generated by applying
a PTAT voltage to a resistor of the fourth group. In most
processes, for typical values of the Meijer parameter (ηM ,
the best resistor type will be the one with the most negative
TC (in agreement with the experimental results reported in
[9]).

Figs. 1–3show the typical non linear errors (the parameter
ηM has been set to 3) obtained by using different collector
currents in the temperature range [250, 350 K]. In all these
figures the solid line refers to a constant collector current and
the dashed lines refer to PTAT/R collector currents where
the TC of the resistor changes (−5000,−2500 and 0 ppm/K
in Fig. 1; 0, 2500 and 5000 ppm/K inFig. 2; 5000, 7500 and
10,000 pm/K inFig. 3).

FromFig. 1it is evident that if a PTAT/Rcollector current
is used with a TC equal to−2500 ppm/K the curvature is
strongly reduced.

Fig. 4 shows the total non linear error (above defined) as
a function of the TC of resistances. It is evident the presence
of two minima, but it is clear that it is impossible to zero the
total non linear error (in fact, even if∂2VBE(T0)/∂T

2 = 0,
other higher order non linear terms are present).

Let us now suppose that we are able to generate a
PTAT/R collector current using a resistor whose TC may be
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Fig. 1. The non linear error as a function of the temperature for a constant
collector current (solid line) and for different PTAT/R collector currents
(dashed lines; the TC of the resistor varies from−5000 up to 0 ppm/K);
the Meijer parameterηM has been considered equal to 3.

arbitrarily defined (later on we will discuss possible circuit
solutions); fromFig. 4 it is evident that the two solutions
(14) are not equivalent (in one case the total non linear error
is much smaller). Another significant difference between
the two solutions is the tolerance on TCs which permits to
achieve a predefined performance; for instance, if the total
non linearity error must be kept below 0.5 mV we should
satisfy one of the two conditions

A ≡ (−3500 ppm/K ≤ β ≤ −1000 ppm/K)

B ≡ (7500 ppm/K ≤ β ≤ 9300 ppm/K)
(23)

so that, beside better performance (as it is clear fromFig. 4),
the solutionA also gives better results from the point of
view of rejection of spread of TCs. We note that (23) are
in agreement (discrepancies are due to higher order non

Fig. 2. The non linear error as a function of the temperature for a constant
collector current (solid line) and for different PTAT/R collector currents
(dashed lines; the TC of the resistor varies from 0 up to 5000 ppm/K);
the Meijer parameterηM has been considered equal to 3.

Fig. 3. The non linear error as a function of the temperature for a
constant collector current (solid line) and for different PTAT/R collector
currents (dashed lines; the TC of the resistor varies from 5000 up to
10,000 ppm/K); the Meijer parameterηM has been considered equal to 3.

linearities) with the theoretical values

β = 1 ± √
η

T0
= 1 ± √

3

T0
=
{−2440 ppm/K

9106 ppm/K
(24)

The derivatives of order higher than the second may also
introduce non negligible errors; we may compute

∂3VBE(T0)
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If the collector current is a PTAT/R current, then we have
α = 1/T0, so that
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Fig. 4. The total non linear error (in the temperature range [250, 350 K]) as
a function of the TC of the resistor used to generate the PTAT/R collector
current; the Meijer parameterηM has been considered equal to 3.
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This relation may be used to identify the “best” solution
among (18) from the point of view of better reduction of the
third order non linearity errors (the solution with minimum
|∂3VBE(T0)/∂T

3| should be chosen).
In conclusion, the two solutions which zero the curvature

are not completely equivalent, since if we take into account
other non idealities (such as the spread of TCs, the non lin-
ear temperature dependence of resistances, the higher order
derivatives ofVBE(T), . . . ) one of those solutions is prefer-
able. Although we have shown the theoretical method for
the selection of the “best” choices (from the point of view
of the spread of TCs, the non linear temperature dependence
of resistances, the higher order derivatives ofVBE(T), . . . ),
in practical applications, it is better to use an analog simu-
lator which is able to take into account many other non ide-
alities which may introduce additional non linearities (such
as the finite current gain of the transistor, parasitic base and
emitter resistors,. . . ).

Finally we give a design guideline for the optimal curva-
ture correction obtainable by using a generic collector cur-
rent of the form

IC = V0(1 + α(T − T0))

R0[1 + β(T − T0)]
(27)

If there are one or more resistor types satisfying the condition

β ≤ 1 − √
ηM

T0
or β ≥ 1 + √

ηM

T0
(28)

(a) The “best” among those resistor types must be selected
(use an analog simulator).

(b) α must be tuned so that it is equal to the “best” (use an
analog simulator) among the two values.

α1,2 =
1 ±

√
1 − (ηM + 2βT0 − β2T 2

0 )

T0
(29)

If, as it is usually the case, there is no resistor type satis-
fying the condition (28) then

(a) PTAT/R collector current must be used.
(b) The resistor type having the “best” TC must be selected

(use an analog simulator).

In the second case only a partial curvature correction may
be achieved; however this is obtained “for free” (without
additional components, calibration or increased design com-
plexity) just by properly selecting the resistor type to be used
in a standard bandgap circuit.

As we discussed, a practical obstacle to curvature correc-
tion is the lack of resistors with large absolute values of the
TC; in the next sections we will discuss how to circumvent
this technological limitation.

3. Implementation of virtual resistors with large
absolute values of the TC

∂2VBE(T0)/∂T
2 could be zeroed if TCs of resistances may

be arbitrarily tuned; however, although technological solu-

tions for tuning TCs of integrated resistances exist, in most
cases TCs of the basic resistor types are fixed (by the given
process).

It is possible, in principle, to design resistive (one port)
networks constituted by resistors of different types; the TC
of the final resistive (one port) network may be tuned but
the maximum absolute value of this TC may not be very
large (see later). For this reason we introduce two different
bandgap circuit topologies.

3.1. Arbitrary resistive networks

Since resistors with different TCs are generally available,
it is possible to realise a resistor by using arbitrary connec-
tions of different basic resistor types. If, for instance, two
resistorsR1 andR2 are connected in series (the analysis of
TCs of two series or shunt connected resistors has yet been
reported in[21]), we have

R (T ) = R10 [1 + β1 (T − T0)] + R20 [1 + β2 (T − T0)]

= R0 [1 + β (T − T0)] (30)

where

R0 = R10 + R20

β = R10β1 + R20β2

R10 + R20

(31)

If two resistorsR1 andR2 are shunt connected, we have

R(T) = R10[1 + β1(T − T0)] × R20[1 + β2(T − T0)]

R10[1 + β1(T − T0)] + R20[1 + β2(T − T0)]
(32)

and it is evident that, in the general case,R(T) is not linear
with temperature. It is however possible to approximateR(T)
with its Taylor polynomial of the first order, that is

R(T) � R0[1 + β(T − T0)] R0 = R(T0) = R10R20

R10 + R20

β = 1

R(T0)
× ∂R(T0)

∂T
= R10 + R20

R10R20

× R10R20
R10β2 + R20β1

(R10 + R20)2

= R10β2 + R20β1

R10 + R20
(33)

In both cases (series and shunt connections) we may write

β = cβ1 + (1 − c)β2 (34)

where 0≤ c ≤ 1.
As a consequence, in both cases we find

min{β1, β2} ≤ β ≤ max{β1, β2} (35)

(35) may be generalized as follows: the TCβ of a resistor
constituted by an arbitrary resistive networks where each
resistorRk has its own TC (βk satisfies

min{β1, β2, . . . , βN} ≤ β ≤ max{β1, β2, . . . , βN} (36)
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It is then impossible, by using arbitrary resistive networks, to
obtain an absolute value of the TC larger than the maximum
absolute value of the TCs of the basic resistor types. As a
result, if the conditions (12) may not be satisfied by using
one of the basic resistor types, it is also impossible to satisfy
(12) by using an arbitrary resistive network.

The parameterc in (34) may be tuned to any value 0≤ c ≤
1 depending on values ofR10/R20 (but not on absolute values
of R10 and of R20); on the other hand, since resistorsR1
andR2 are of different types, tolerance on the ratioR10/R20
is generally large, thus requiring calibration for accurate
control ofc (and therefore for accurate control ofβ).

3.2. The anti-series virtual resistor

We may in principle use a collector current

IC = VT ln(r)

R1 − R2
= VT ln(r)

R
(37)

that is a PTAT/R current (where the effective resistanceR
is the difference between two physical resistances). In order
to stress thatR is not a physical resistor, we refer toR as
a virtual resistor; furthermore, since the virtual resistor is
obtained as the difference between two resistors, we call this
the anti-series virtual resistor.The temperature dependence
of the anti-series virtual resistanceR is given by

R(T) = R10[1 + β1(T − T0)] − R20[1 + β2(T − T0)]

= R0[1 + β(T − T0)] (38)

where

R0 = R10 − R20

β = 1

R(T0)
× ∂R(T0)

∂T
= R10β1 − R20β2

R10 − R20
(39)

The TC,β, of the virtual resistorR is not forced to satisfy
(35), and in principle any desired value ofβ (included values
given by (18) which allows to zero∂2VBE(T0)/∂T

2) may be
obtained; in fact the condition

β = R10β1 − R20β2

R10 − R20
= βdesired (40)

is satisfied if the resistor ratio (at room temperature)r0 is

r0 = R10

R20
= β2 − βdesired

β1 − βdesired
(41)

Sincer0 is a resistor ratio, it must be positive, that is{
β2 − βdesired

β1 − βdesired
≥ 0

}
�

{[(β2 ≥ βdesired) and(β1 ≥ βdesired)] or

[(β2 ≤ βdesired) and(β1 ≤ βdesired)]}

(42)

However, since typically the absolute value ofβdesired is
much larger than the absolute values of integrated (physical)
resistances, the conditions (42) are generally satisfied.

On the other hand a practical limit arises from (37): since
the collector current must be positive, we need

R1(T) > R2(T)∀T ∈ TR (43)

which limits the possibility to obtain indefinitely large ab-
solute values of TCs (however large absolute values of TCs
may still be obtained).

We may rewrite (40) as

β = R10β1 − R20β2

R10 − R20
= r0β1 − β2

r0 − 1
(44)

Even in this case, although (41) shows that compensation of
curvature only requires to fix a resistor ratio (at the temper-
atureT0), since resistorsR1 and R2 are of different types,
the accurate control of their ratio,r0, requires calibration.

A possible CMOS circuit which accomplishes (37) is
shown inFig. 5; in this circuit a regular PTAT voltage is
added to the base to emitter voltage of a transistor whose
collector current is given by (37).

The operational amplifier establishes the relation (for sim-
plicity we assume perfect matching ofM1 andM2 and we
neglect the base currents)

VEB1 + R1IC = VEB2 + R2IC (45)

that is

VT ln

(
IC

IS1

)
+ R1IC = VT ln

(
IC

IS2

)
+ R2IC (46)

or

VT ln

(
IS1

IS2

)
= VT ln(r) = (R1 − R2)IC (47)

which gives (37).
Clearly it is fundamental to make sure that, in the operative

conditions range TR,

R1(T) > R2(T)∀T ∈ TR (48)

We notice that ifR1 andR2 are (almost) linearly dependent
on temperature, the anti-series virtual resistorR also shows
an (almost) linear temperature dependence.

Finally we observe that the proposed circuit is a general-
ization of a very standard CMOS bandgap reference (which
is obtained by just setting the resistorR2 at zero).

3.3. The anti-shunt virtual resistor

We may in principle use a collector current

IC = VT ln(r)

R
= VT ln(r)

R1 − R2

R1R2
(49)

that is a PTAT/R current; in this case the virtual resistorR
is given by

R = R1R2

R1 − R2
(50)

so we refer to it as the anti-shunt virtual resistor.
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Fig. 5. Bandgap reference circuit for the implementation of an anti-series virtual resistor.

The temperature dependence of the anti-shunt virtual re-
sistanceR is given by

R(T) = R10[1 + β1(T − T0)]R20[1 + β2(T − T0)]

R10[1 + β1(T − T0)] − R20[1 + β2(T − T0)]∼= R0[1 + β(T − T0)] (51)

where

R0 = R10R20

R10 − R20

β = 1

R(T0)
× ∂R(T0)

∂T
= R10β2 − R20β1

R10 − R20
(52)

In this case, it is possible to impose

β = R10β2 − R20β1

R10 − R20
= βdesired (53)

by fixing the resistor ratio (at room temperature)r0

r0 = R10

R20
= β1 − βdesired

β2 − βdesired
(54)

The circuit inFig. 6 may be used to obtain a PTAT/R col-
lector current with an anti-shunt virtual resistor. We men-
tion that two different PTAT/Rcurrent sources are necessary,
since the resistorR1 andR2 are in general different (then it
is not possible to use a single PTAT/R current source and a
current mirror). Clearly it is fundamental to make sure that,
in the operative conditions range TR, we have

R1(T) > R2(T)∀T ∈ TR (55)

We notice that, in contrast with the case of the anti-series
virtual resistor, even ifR1 andR2 are linearly dependent on
temperature, the anti-shunt virtual resistorRmay show a non
linear temperature dependence, which clearly may affect the
non linearity ofVBE(T).

Finally we observe that the proposed circuit is a general-
ization of a very standard bandgap reference (which is ob-
tained by just replacing the resistorR1 with an open circuit).

3.4. Effects of the spread of the TCs of the resistors

The spread of the TCs of the resistorsR1 and R2 will
introduce an error in the TC of the virtual resistor; as an
example in the case of the anti-series virtual resistor we have

β = R10β1 − R20β2

R10 − R20
= r0β1 − β2

r0 − 1
= c1β1 − c2β2

dβ = ∂β

∂β1
dβ1 + ∂β

∂β2
dβ2 = c1 dβ1 − c2 dβ2 (56)

From Fig. 4 we see that, even if we take into account such
tolerance, it is still possible to strongly reduce the curvature.

Fig. 6. Bandgap reference circuit for the implementation of an anti-shunt
virtual resistor.
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4. Single temperature auto-calibration procedure

It has been shown that tuning of TC is achieved by tuning
of r0, so the following single temperature calibration may
be applied to all cases:

1. atT = T0 we inject the currentsIX andr0IX through the
resistorsR1 andR2.

2. we tune the integrated resistanceR1 (for instance using
a digitally tunable resistance or laser trimming) until the
voltage drops across the two resistances are equal (those
two voltage drops equate whenR10IX = r0IXR20 ⇔
R10/R20 = r0)

The errors in equating the voltage drops across the two
resistances (that is in fixing the ratior0) and spread of the
TCs of the basic resistor types will result in errors of the
final TC, and thus in non exact zeroing of∂2VBE(T0)/∂T

2;
if spread of TCs of available resistors and accuracy in fixing
r0 are known, the resulting total non linear error may be
evaluated by designers by plots similar to that shown in
Fig. 4.

5. Conclusions

Since the second order non linearity ofVBE(T) is of-
ten the fundamental limit to thermal stability of bandgap
references, curvature correction ofVBE(T) is a main issue
in the design of high performance integrated sensors sys-
tems. Although, among many other techniques, it has yet
been reported that PTAT/R collector current and tempera-
ture dependence of resistances may reduce the curvature of
VBE(T), the potentialities and the limits of these techniques
were not yet systematically analysed, leading to non-optimal
designs.

In this paper we have theoretically demonstrated that the
use of PTAT/R collector current is generally convenient and
that proper choice of the resistor type to be used in standard
bandgap circuits may significantly reduce the curvature of
VBE(T) “for free” (without calibration, additional circuitry
or increased design complexity).

Furthermore, since better curvature correction is forbid-
den by the lack of integrated resistors with very large abso-
lute values of the TC, we have introduced two novel low cost
bandgap circuit topologies which overcome this technologi-
cal limitation by mean of a virtual (anti-series or anti-shunt)
resistor; finally we have discussed the effects of the spread
of the TCs of integrated resistors in the proposed circuit
topologies and a single temperature auto-calibration proce-
dure.
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